Top pair production cross section in the lepton+jets channel using b-taggingIntroduction
The top quarkThe heaviest elementary particle known today, the top quark, weighs as much as 175 protons or the equivalent of a gold atom. To produce such massive particles requires enormous energies. The top quark was discovered in 1995 by the DØ and CDF experiments at the Tevatron accelerator, in head-on collisions of protons and anti-protons travelling very close to the speed of light. The Tevatron accelerator, located at Fermi National Accelerator Laboratory ( Fermilab) outside Chicago, is still the only accelerator built with sufficient energy to produce top quarks.The production cross sectionTop quarks are predominantly produced in pairs (one top and one anti-top quark together). This analysis aims at determining how likely this is to happen (physicists call this probablility of particles being created the production cross section and it is measured in the unit of picobarns, abbreviated pb). According to theory, top quarks are produced only in 1 out of about 10 billion collisions at the Tevatron energy (a collision is often referred to as an event). Particularly interesting would be to measure a production rate which is incompatible with the prediction from theory, as this would imply new and unknown physics.To measure the production cross section we first count the number of event with the correct signature. We then subtract the number of events which has the same signature but are coming from other sources than top quarks (such events are called background events). If we select more events in our data than we predict from background sources, we interpret the excess as coming from the production of top quarks. The magnitude of the excess determines the cross section. The event signature
Finally we require that at least one of the particle jets in the event is identified as coming from a bottom quark. The bottom quark will produce a particle which travels a few millimeters before it decays into lighter particles. If we find such a decay point inside a jet, we identify this jet as coming from a bottom quark. This is a powerful tool to discard a lot of the background events, since they very seldom have jets coming from bottom quarks. ResultShown in the figures below is a comparison of the number of events predicted (the histogram) and observed (the points). The left figure shows events with one jet identified as coming from a bottom quark, and the right plot shows events with two jets identified as coming from bottom quarks. Most of the top quark events have three or four jets, whereas events with one or two jets mainly come from background sources. The first two jet multiplicity bins are therefore not used in the calculation of the cross section. They do however confirm that we can predict the correct amount of background events.In the last two jet multiplicity bins the observed number of events far exceeds the background prediction. The excess results in a cross section of: This is in good agreement with what is expected from the Standard Model, which is 6.8 ± 0.4 pb. OutlookUsing the selection for top quark events like the one described above, properties of the top quark - such as its mass - can also be studied. Other decay modes of the top quarks are also being checked for agreement with the Standard Model. By refining our analysis methods and using the continuosly accumulating data, we are moving towards doing precision measurements of top quark physics. By the year 2009 we expect to have a data sample roughly 20 times larger than the one used for this analysis. This will allow us to continue to verify the predictions of the Standard Model or find something that deviates from the expected behaviour and thus evidence for new and exciting physics.The full article can be found here. For more information on this analysis, please contact the primary authors C. Clement, R. Demina, T. Golling, A. Juste, A. Khanov, S. Lager, F. Rizatdinova, E. Shabalina and J. Strandberg. |