

Observation of Single Top Quark Production at DØ

Liang Li University of California at Riverside

On Behalf of the D0 collaboration

Single Top Quark Production

Single top electroweak interaction

- Study Wtb coupling
 - Direct measurement of the $|V_{tb}|$ CKM matrix element
 - Test of CKM unitarity
 - Anomalous Wtb couplings
- New physics, example:
 - s-channel is sensitive to W', H+
 - t-channel is sensitive to FCNC
 - 4th quark generation?
- Study top properties:
 - Polarization, decay width, lifetime, CP violation ...
- Experimental:
 - Test of advanced searching techniques
 - Background study helps new physics searches, e.g. SM Higgs
 - Same final state as WH

Experimental Challenge

Previous Results: Evidence for Single Top Production

CDF and DØ tb+tqb Cross Section

Single Top Cross Section	Signal Significance Expected Observed		CKM Matrix Element V_{tb}	
December 2	2006 DØ	(0.9 fb ⁻¹)	PRL 98, 181802 (2007)	
4.7 ± 1.3 pb	2.3 σ	3.6 σ	$\left V_{tb} f_1^L \right = 1.31 \substack{+0.25 \\ -0.21} \\ \left V_{tb} \right > 0.68 \text{ at } 95\% \text{ CL}$	
September 2008 CDF (2.2 fb ⁻¹) PRL 101, 252001 (2008)				
2.2 ± 0.7 pb	4.9 σ	3.7 σ	$\left V_{tb} f_1^L \right = 0.88 \stackrel{+0.13}{_{-0.12}}$ $\left V_{tb} \right > 0.66$ at 95% CL	

New chapter: march 4, 2009 both D0 and CDF independently present first observation of single top, 14 years after discovery of top pair production

Dataset

Tevatron performs very well, many thanks!

- 2.3 fb⁻¹ for the observation analysis
 - 1.1 fb⁻¹ Run IIa dataset, 1.2 fb⁻¹ Run IIb dataset

Analysis Flow

Event Selection

- Select W-like events
- Remove background-like events
- Apply b-tagging and maximize signal acceptance

Separate Signal from Background

- Compare data with Monte Carlo
- Find discriminating variables
- Multivariate analyses

Determine Cross Section

- Build binned likelihood
- Use shape information
- Bayesian approach

Event Selection

Event Topology:

- High energy isolated lepton (e or mu from W)
- Missing E_T (v from W)
- One b-quark jet (from t)
- A light flavor jet and/or another b-jet (One or two b-tagged jets)

Analysis done in 24 separate channels

- Run IIa, Run IIb
- Two Lepton flavors: electron, muon
- Three jet bins: 2 jet, 3 jet, 4 jet
- Two tag bins: 1 b-tag, 2 b-tag

Signal and Background Modeling

Signal:

- CompHEP-SINGLETOP
- Distributions agree well with ZTOP & MCFM (NLO)

Background:

- W+jets production
 - Estimated from data & MC
 - Distribution shapes from ALPGEN
 - Normalization, Wcc and Wbb factor from data
- Top pair production
 - ALPGEN+PYTHIA
 - Normalized to NNLO cross section
- Multijet events
 - Misidentified lepton
 - Estimated from data

Data/MC Comparison

Single Top Observation, L. Li (UC Riverside)

Event Yields and Systematics

Event Yields in 2.3 fb ⁻¹ of DØ Data					
Electron + muon, 1 tag + 2 tags combined					
Source	2 jets	3 jets	4 jets		
s-channel tb	62 ± 9	24 ± 4	7 ± 2		
t-channel tqb	77 ± 10	39 ± 6	14 ± 3		
W+bb	678 ± 104	254 ± 39	73 ± 11		
W+cc	303 ± 48	130 ± 21	42 ± 7		
W+cj	435 ± 27	113 ± 7	24 ± 2		
W+jj	413 ± 26	140 ± 9	41 ± 3		
Z+jets	141 ± 33	54 ± 14	17 ± 5		
Dibosons	89 ± 11	32 ± 5	9 ± 2		
$t\bar{t} \rightarrow \ell \ell$	149 ± 23	105 ± 16	32 ± 6		
$t\bar{t} \rightarrow \ell + jets$	72 ± 13	331 ± 51	452 ± 66		
Multijets	196 ± 50	73 ± 17	30 ± 6		
Total prediction	2,615 ± 192	1,294 ± 107	742 ± 80		
Data	2,579	1,216	724		

Expected number of signal events less than background uncertainties

Must use multivariate discriminant to separate signal from background

Signal acceptance s-channel, tb: $3.7 \pm 0.5 \%$ t-channel, tqb: $2.5 \pm 0.3 \%$

Systematic Uncertainties				
Ranked from Largest to Smallest Effect on Single Top Cross Section				
DØ 2.3 fb) ⁻¹			
Larger terms				
<i>b</i> -ID tag-rate functions (includes shape variations)	(2.1–7.0)% (1-tag) (9.0–11.4)% (2-tags)			
Jet energy scale (includes shape variations)	(1.1–13.1)% (signal) (0.1–2.1)% (bkgd)			
W+jets heavy-flavor correction	13.7%			
Integrated luminosity	6.1%			
Jet energy resolution	4.0%			
Initial- and final-state radiation	(0.6–12.6)%			
b-jet fragmentation	2.0%			
tt pairs theory cross section	12.7%			
Lepton identification	2.5%			
Wbb/Wcc correction ratio	5%			
Primary vertex selection	1.4%			

Overtementie I Imperate in the

Most systematic uncertainties apply only to normalization, except jet energy scale and b-tagging which affect shapes Cross section uncertainties are

dominated by the statistical uncertainty

Multivariate Analyses

Three methods – "Blind Analyses": optimizing on expected sensitivity

- Boosted Decision Trees (BDT)
 - Recover events that fail in cut-based analysis
 - Common object and event kinematics, angular correlations, jet reconstruction and top quark reconstruction variables
 - Use highest ranked common 64 variables
- Bayesian Neural Network (BNN)
 - Average over many neural networks, improving performance
 - Uses best 18-28 variables
- Matrix Element (ME)
 - Use Feynman diagrams to compute event probability density for signal and background (2jet: tb, tq, tt, WW, WZ, ggg, wbb, wcg, wgg; 3jet: tbg, tqb, tqg, wbbg, Wugg)
 - Split sample $H_T > 175$ GeV improves performance
- Serve also as cross check of each other

Discriminating Variables

tb+tqb

W+jets Other

Multivariate Discriminant Outputs

Single Top Observation, L. Li (UC Riverside)

Cross Check Sample

Many cross checks, a few examples shown

Single Top Observation, L. Li (UC Riverside)

SUSY 2009, Jun 6 2009

Cross Section Measurement

Compute Bayesian posterior probability density as a function of σ (tb+tqb)

- Using binned likelihood from discriminant distribution
 - Product of 24 channels
- Flat prior for the cross section
- Integrate over all systematic uncertainties

• Single top cross section is given by the position of the posterior density peak, with 68% asymmetric interval as uncertainty

Linearity Check

Yet another cross check

Significance

- P-value: assuming a null hypothesis, what's the probability to get a value equal to or greater than the value observed (cross section)
- Use a large ensemble of background-only pseudodatasets. Each such dataset corresponds to 2.3 fb⁻¹ data without any single top including all systematic uncertainties and all correlations
- The single top cross section was measured in each such pseudo-dataset in exactly the same way as we measure in our real dataset.
- Measure the fraction of background-only datasets in which we derive at least the SM cross section (expected significance), or at least the observed cross section (observed significance).

Expected and Observed Results

	Boosted Decision Trees		Bayesian NN		Matrix Element	
	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.
σ (s+t)[pb]	3.61 +0.95 -0.89	3.74 ^{+0.95} -0.79	3.60 ^{+1.02} -0.90	4.70 ^{+1.18} -0.93	3.60 ^{+1.10} -0.96	4.30 +0.99 -1.20
significance	4.33	4.62	4.08	5.41	4.11	4.94

SUSY 2009, Jun 6 2009

Single Top Observation, L. Li (UC Riverside)

Combination of Three Analyses

[dq]

tb+tqb Xsection

107

10⁶

10⁵

104

10³

10²

10

0

- Three analyses give consistent results
- Taking advantage of all information: a combination should lead to a more precise measurement and increased signal sensitivity
- Use a BNN to perform the combination. It takes BDT, **BNN and ME discriminants** as input and builds a No. of 2.3 fb⁻¹ pseudo-datasets "super discriminant"
- Best sensitivity: 4.5 σ expected significance!

5

tb+tqb Cross Section [pb]

Combination Result

Combination Result

Direct measurement of |V_{tb}|

- Once we have a cross section measurement, we can make direct measurement of $|V_{tb}|$
 - Calculate posterior in $|V_{tb}|^2$: $\sigma \propto |V_{tb}|^2$
- **Assume standard model production:**
 - Pure V-A and CP conserving interaction: $f_1^R = f_2^L = f_2^R = 0$
 - $|V_{td}|^2 + |V_{ts}|^2 << |V_{tb}|^2$
 - Additional theoretical errors included (top mass, scale, PDF etc...)

Measurement does not assume 3 generations or unitarity

Summary

Observation for single top production at DØ!

• Submitted to PRL (arXiv:0903.0850)

Summary of results:

DØ 2.3 fb ⁻¹ Single Top Results				
	Single Top	Significance		
Analysis Method	Cross Section	Expected	Measured	
Boosted Decision Trees	3.74 ^{+0.95} _{-0.79} pb	4.3 σ	4.6 σ	
Bayesian Neural Networks	4.70 ^{+1.18} _{-0.93} pb	4.1 σ	5.4 σ	
Matrix Elements	$4.30 \ ^{+0.99}_{-1.20}$ pb	4.1 σ	4.9 σ	
Combination	$3.94\pm0.88~\text{pb}$	4.5 σ	5.0 σ	

 $|V_{tb}f_1^L| = 1.07 \pm 0.12$ $|V_{tb}| > 0.78$ at 95% CL

Backup

Combination Cross Check

b-jet identification (b-tagging)

- Separate *b*-jets from light-quark and gluon jets to reject most W+jets background
- DØ uses a neural network algorithm with seven input variables based on impact parameter and reconstructed vertex
- Two operating points used in analysis:
 - TIGHT ($\varepsilon_{b} = 40\%$, $\varepsilon_{c} = 9\%$, $\varepsilon_{l} = 0.4\%$)
 - LOOSE ($\epsilon_b = 50\%$, $\epsilon_c = 14\%$, $\epsilon_t = 1.5\%$)
- Leading b-jet $p_T > 20 \text{ GeV}$
- Define two exclusive samples
 - EqOneTag: 1T, no L
 - EqTwoTag: 2L (was 2T; \approx 50% gain)

- Uncertainties dominated by variation in data samples used to measure the efficiencies.
- Smaller contribution from MC sample dependence

MC splitting and Binning Transformation

MC samples were split into three equal-sized independent subsets

- training sample : used to train the BDT, BNN and ME
- <u>testing sample</u>: used for testing purposes (and also to train the combination BNN)
- vield sample : used to measure the cross section and make all plots

BINNING TRANSFORTATION: Used for BDT, BNN & Combination

Same-sized bins (left) suffer from low entries, a bin can have signal but no background. Transformation (center) ensures a minimum number of background events in each bin. Transformed quantity (right) stays proportional to the probability of being signal. ME: bins are ordered in S/B, and sample is split in two H_T regions