

GEORG-AUGUST-UNIVERSITÄT Göttingen **GEFÖRDERT VOM**

Bundesministerium für Bildung und Forschung

Observation of the single top production at the Tevatron

Elizaveta Shabalina University of Goettingen, Germany for the CDF and D0 collaborations

APS April meeting 2009 Denver, May 2 – 5, 2009

Outline

- Motivation
- Signal and background
- Event selection
 - Systematic uncertainties
- Statistical analysis
 - Cross section extraction
 - Significance calculation
- Multivariate Methods
 - Dedicated talks by A.Heinson, C.Gerber, M.Pangilinan (D0) and B.Casal (CDF) in this session
- Combination

May 3,.2009

- IV_{tb} measurement
- Summary and outlook

The Top quark

May 3,.2009

Elizaveta Shabalina (Uni Goettingen) – APS April 2009 meeting

May 3,.2009

Long way to discovery

· Search:	PRD 63, 031101 (2000)
· Search:	PLB 517, 282 (2001)
 Search: 	PLB 622, 265 (2005)
• W':	PLB 641, 423 (2006)
· Search:	PRD 75, 092007 (2007)
· Evidence:	PRL 98, 181802 (2007)
· FCNC:	PRL 99, 191802 (2007)
• W':	PRL 100, 211802 (2007)
· Evidence:	PRD 78, 012005 (2008)
· Wtb:	PRL 101, 221801 (2008)
· Wtb:	PRL 102, 092002 (2009)
• H+:	(PRL) arXiv:0807.0859
· Observation:	(PRL) arXiv:0903.0850

	· Search:	PRD	65, 091102 (2002)
Run I	• W'	PRL	90, 081802 (2003)
	· Search:	PRD	69, 052003 (2004)
	· Search:	PRD	71, 012005 (2005)
Run II	· Evidence:	PRL 101, 252001 (2008)	
	· FCNC:	(PRL) arXiv:0812.3400	
	• W':	(PRL	.) arXiv:0902.3276
	· Observation:	(PRI	L) arXiv:0903.0885
Single Top Cross Section	Signal Significance		CKM Matrix Element V _{tb}
December	2006 DØ (0.9	fb ⁻¹)	PRI 98 181802 (2007)

Cross Section	Expected	Observed	CKM Matrix Element V _{tb}	
December 2006 DØ (0.9 fb ⁻¹) PRL 98, 181802 (2007)				
4.7 ± 1.3 pb	2.3 σ	3.6 σ	$ig V_{tb} f_1^L ig = 1.31 {}^{+0.25}_{-0.21} \ ig V_{tb} ig > 0.68 \ ext{ at 95\% CL}$	
September 2	008 CDF	(2.2 fb ⁻¹)	PRL 101, 252001 (2008)	
2.2 ± 0.7 pb	4.9 σ	3.7 σ	$\begin{vmatrix} V_{tb} f_1^L \end{vmatrix} = 0.88 {}^{+0.13}_{-0.12} \ V_{tb} \end{vmatrix} > 0.66 \text{ at 95\% CL}$	

May 3,.2009

The Tevatron

- The highest energy particle accelerator in the world
- Proton-antiproton collider with √s = 1.96 TeV

Run I 1992-1995 Top quark discovered!

Run II 2001-11(?) Single top quark discovered!

Climbing to the top...

Outstanding performance of the Tevatron! THANK YOU!

May 3,.2009

What will we learn?

Access to W-t-b vertex

- Probe V-A structure
- Top quark spin

Direct measurement of $|V_{tb}|^2$

- Test unitarity of CKM matrix
- Is it 3×3 matrix?

May 3,.2009

Is 4th generation possible?

Small mixing with 4th family is favored Quite large mixing is still not excluded **Constraints**:

tree-level 3×3 CKM elements FCNC processes (K-, D-, $B_d\text{-},\,B_s\text{-mixing},\,b\to s)$

Assumption: unitary 4×4 CKM matrix A. Lenz et al. in arXiv 0902.4883 [hep-ph]

Elizaveta Shabalina (Uni Goettingen) – APS April 2009 meeting

(2007).:

0.6

0.8

1.0

SM and beyond

s-channel 2 b-jets Top quark decay products and the b tend to be all central

t-channel

2 *b*-jets and one light One of *b*'s tends to be very close to the beam pipe

- No striking signatures as for tt
- Signal and background distributions look similar

Backgrounds

May 3,.2009

Elizaveta Shabalina (Uni Goettingen) – APS April 2009 meeting

11

May 3,.2009

Elizaveta Shabalina (Uni Goettingen) – APS April 2009 meeting

12

Selection I (I+jets)

Starting S:B = $1:10^9$

- Single lepton (e, μ) & MET+ jets triggers
- One high p_T lepton
- MET and 2-4 (D0), 2-3 (CDF) high p_T jets
- Cuts to suppress multijet background
 Veto to suppress Z and tt

 Verify background model before *b*-jet tagging
 Dominated by W+ light jets

May 3,.2009

Selection II: *b*-tagging (I+jets)

May 3,.2009

Selection II – MET+ jets

New channel

- Recover non-fiducial leptons and hadronic τ decay
 - Orthogonal to lepton+jets
- MET+ jets trigger
 - Huge instrumental background from QCD multijets
- MET>50 GeV and veto leptons
- **E**_T>35 (25) GeV 1st (2nd) jet
- At least 1 b-tag

May 3,.2009

NN to suppress multijet bckg Signal region: ANN>–0.1 Control region: ANN<–0.1</p>

Quantity	Pre-selection	After QCDNN cut	Difference
Signal (S)	75	68	-9 %
QCD Background	2960	675	-77%
Total Background (B)	3840	1350	-65 %
S/√S+B	1.2	1.8	+50%
S/B	1/50	I/20	+150%

Improvements

- 3.2 fb⁻¹ (2.2–2.7 fb⁻¹ in summer)
- Extended muon coverage
 30% gain in muon acceptance
 10-14% gain in sensitivity

- 2.6 times more data (2.3 fb⁻¹)
- 18% larger acceptance
 - Logical OR of many triggers
 - Looser cuts on 2nd jet and muon p_T
 - Increased $|\eta|$ for 1st jet (2.5 \rightarrow 3.4)
 - Looser b-tagging requirements for 2 b-tag events
- Additional cuts to reduce background
- Improved (more detailed) background modeling
 - Data-based corrections to Alpgen model of W+jets
- Improved treatment of multijet background

		•			
Event Y	ïelds		Process	$\ell + E_T + jets$	$E_T + jets$
in 2.3 fb ⁻¹ of	f DØ Data	255 events	s-channel signal	77.3 ± 11.2	29.6 ± 3.7
e,µ, 2,3,4-jets, 1,2-	tags combined	for m _t =175	t-channel signal	$113.8~\pm~16.9$	34.5 ± 6.1
tb + tqb	223 ± 30	for m _t =170	W + HF	1551.0 ± 472.3	304.4 ± 115.5
<i>W</i> +jets	2,647 ± 241		$t\bar{t}$	686.1 ± 99.4	184.5 ± 30.2
Z+jets, dibosons	340 ± 61		Z+jets	52.1 ± 8.0	128.6 ± 53.7
<i>tī</i> pairs	1,142 ± 168		Diboson	118.4 ± 12.2	42.1 ± 6.7
Multijets	300 ± 52		QCD+mistags	777.9 ± 103.7	679.4 ± 27.9
Total prediction	4,652 ± 352		Total prediction	3376.5 ± 504.9	1404 ± 172
Data	4,519	-	Observed	3315	1411
ag 2 jets 1:20 1:20 1:10	3 jets 1:21 1:15	4 jets	 S:B ratios from 1:10 to 1:34 depending on number of jets and tags Most powerful channel - 2 jet, 1 tag – S:B ~ 1:20 Keep channels separately in the analysis 		
	Event Y in 2.3 fb ⁻¹ of $e,\mu, 2,3,4$ -jets, 1,2- tb + tqb W+jets Z+jets, dibosons tt pairs Multijets Total prediction Data 2 jets ag $2 jets$ 1:10	Event Yields in 2.3 fb ⁻¹ of DØ Data $e,\mu, 2,3,4$ -jets, $1,2$ -tags combined $tb + tqb$ 223 ± 30 W +jets $2,647 \pm 241$ Z +jets, dibosons 340 ± 61 $t\bar{t}$ pairs $1,142 \pm 168$ Multijets 300 ± 52 Total prediction $4,652 \pm 352$ Data $4,519$ 2 jets 3 jets ag 120 120 120 120 120 120 120 120 110	Event Yields in 2.3 fb ⁻¹ of DØ Data255 events for m _t =175 $e,\mu, 2,3,4$ -jets, 1,2-tags combined 255 events for m _t =170 $tb + tqb$ 223 ± 30for m _t =170 $W+jets$ 2,647 ± 241Z+jets, dibosons340 ± 61 $t\bar{t}$ pairs1,142 ± 168Multijets300 ± 52Total prediction4,652 ± 352Data4 jets 2 jets3 jets4 jets q \int_{120}^{120} \int_{121}^{121} $for m_{t} = 175$ $for m_{t} = 170$	Event Yields in 2.3 fb ⁻¹ of DØ DataProcess $e,\mu, 2,3,4$ -jets, 1,2-tags combined255 events s-channel signal for m_t =175s-channel signal for m_t =175 $tb + tqb$ 223 ± 30for m_t =170 $W + HF$ $t\bar{t}$ $W+jets$ 2,647 ± 241 2,647 ± 241Z+jetsDiboson $Z+jets, dibosons$ 340 ± 61 tf pairs $Z+jets$ DibosonMultijets300 ± 52Total prediction $A,652 \pm 352$ DibosonData4,519 I_{120} I_{121} I_{134} ags I_{120} I_{120} I_{120} I_{134}	Event Yields in 2.3 fb ⁻¹ of DØ Data e,μ , 2,3,4-jets, 1,2-tags combined255 events for m,=175s-channel signal77.3 ± 11.2 for m,=175 e,μ , 2,3,4-jets, 1,2-tags combinedfor m,=170 $W + HF$ 1551.0 ± 472.3 tī $tb + tqb$ 223 ± 30for m,=170 $W + HF$ 1551.0 ± 472.3 tī W^+ jets2,647 ± 241 2,4647 ± 241 Z^+ jets52.1 ± 8.0 Diboson Z^+ jets, dibosons340 ± 61 tī pairs1,142 ± 168 300 ± 52 Z^+ jets52.1 ± 8.0 DibosonMultijets300 ± 52300 ± 52Total prediction4,652 ± 352 Data A_519 Data4,519 4 jets G^+ sits $S:B$ ratios from 1.1 1:34 depending or number of jets and jet, 1 tag - S:B ~ 1 Keep channels se in the analysis

May 3,.2009

Elizaveta Shabalina (Uni Goettingen) – APS April 2009 meeting

17

May 3,.2009

Background model validation

SINGLE OBJECT KINEMATICS

Check thousands of distributions to verify background model before and after tagging Several classes of

- variables used in discriminants
- Single object kinematics
- Event kinematics
- Jet reconstruction
- Top quark reconstruction
- Angular correlations

May 3,.2009

May 3,.2009

Systematics

- Statistically limited measurement
- But systematics is important
- Affects normalization and shapes

Systematic Uncertainties

Ranked from Largest to Smallest Effect on Single Top Cross Section

DØ 2.3 fb⁻¹

Larger terms			
<i>b</i> -ID tag-rate functions (includes shape variations)	(2.1–7.0)% (1-tag) (9.0–11.4)% (2-tags)		
Jet energy scale (includes shape variations)	(1.1–13.1)% (signal) (0.1–2.1)% (bkgd)		
W+jets heavy-flavor correction	13.7%		
Integrated luminosity	6.1%		
Jet energy resolution	4.0%		
Initial- and final-state radiation	(0.6–12.6)%		
b-jet fragmentation	2.0%		
tt pairs theory cross section	12.7%		
Lepton identification	2.5%		
Wbb/Wcc correction ratio	5%		
Primary vertex selection	1.4%		

- Estimated for each background and signal source in each analysis channel
- Background uncertainty dominates

Systematic Uncertainty	Rate	Shape
Jet Energy Scale	010%	\checkmark
Initial + Final State Radiation	015%	\checkmark
Parton Distribution Functions	23%	✓
Monte Carlo Generator	15%	
Event Detection Efficiency	09%	
Luminosity	6 %	
Neural Net B-tagger		\checkmark
Mistag Model		\checkmark
Q ² scale in ALPGEN MC		\checkmark
Input variable mismodeling		✓
Wbb+Wcc normalization	30%	
Wc normalization	30%	
Mistag normalization	1729%	
ttbar normalization & m _{top}	23%	\checkmark

Cross section

- Discriminant outputs (from each analysis channel separately) are used to measure cross section
- Build Bayesian probability density with flat nonnegative prior for the cross section
- Peak of posterior distribution gives the cross section, 68% interval gives the uncertainty
- Shape and normalization systematic uncertainties are treated through nuisance parameters with Gaussian distribution
 - Correlations are properly taken into account

Statistical analysis

Build ensembles of pseudo-data

- Includes signal and background events or background only
- Includes all systematic uncertainties
- Purpose before data
 - Test performance of different methods
 - Measure expected cross section uncertainty
 - Expected significance

With data

- Consistency of the measured cross section with the SM
- Observed significance

Significance – probability of the upward background fluctuation that gives observed result in data

May 3,.2009

Signal from background separation

Boosted Decision Trees

nt Yielo	-	•	Data tb+tqb Wbb Wcc	DØ	2.3 f	b ⁻¹
Ever 300	-	ł	$Wjj + Wcj$ $Z+jets$ $t\bar{t} \rightarrow \ell\ell$ $t\bar{t} \rightarrow \ell+jets$ Multijets		• • •	
200	_	, ₽ ⁴ ±	-	50 -	•	• •
100	-	÷	** [†] ****	8.6	0.8	1
0	0	0.2	0.4	0.6	0.8	1

500 -

Boosted Decision Trees Output

May 3,.2009 El

2.3

3.2

8.0

Elizaveta Shabalina (Uni Goettingen) – APS April 2009 meeting

 $3.7^{+1.0}_{-0.8}$

 $2.1^{+0.7}_{-0.6}$

4.3 σ 4.6 σ

 5.2σ 3.5σ

Neural Networks

May 3,.2009

Matrix Elements

Elizaveta Shabalina (Uni Goettingen) – APS April 2009 meeting

May 3,.2009

Multivariate Likelihood Function

t-channel likelihood

Combine many variables into a likelihood function

- Signal template built for t-channel
- 4 background classes: Wbb, Wcc/ Wc, tt, mistags
- 7 (10) variables in 2 (3) jet bin to isolate t-channel contribution

May 3,.2009

May 3,.2009

More results...

Cross check samples

Cross checks of discriminant performance using samples depleted in signal

Untagged (high statistics)
 W+jets (nj=2, 1 *b*-tag, H_T(I,v,jets) < 175 GeV)
 tt dominated (nj=4, ≥1 *b*-tag, H_T > 300 GeV)

-0.5

May 3,.2009

Elizaveta Shabalina (Uni Goettingen) – APS April 2009 meeting

1.5

0.5

Final NN Discriminant Output

Combinations

May 3,.2009

Can we see it?

Look at high discriminant regions

May 3,.2009

Measurement of |V_{tb}|

Assume |V_{td}|²+|V_{ts}|²<<|V_{tb}|², SM (V–A) and CP conserving Wtb vertex
 No assumption on the number of quark families or CKM unitarity

Additional Systematic Uncertainties for the <i>V_{tb}</i> Measurement		
DØ 2.3 fb ⁻¹		
For the <i>tb+tqb</i> theory cross section		
Top quark mass 4.2%		
Parton distribution functions 3.0%		
Factorization scale 2.4%		
Strong coupling a_s 0.5%		

|V_{tb}f₁^L|=1.07±0.11(sys+th) |V_{tb}|>0.78 at 95% CL

May 3,.2009

Summary

- Single top quark production has been observed at Tevatron by CDF and D0 with signal significance of 5σ
- Both cross section and |V_{tb}| measurements agree with SM

May 3,.2009

Outlook

This is just the beginning of the single top physics

- Precise measurements of σ_t and σ_s
- Top quark polarization
 - talks by Ji-Eun Jung and B.Casal in this session
- Search for Anomalous Top quark couplings
 - Combination with W helicity from tt (in this session talk by R.Schwienhorst)
- W ' and H⁺ searches

May 3,.2009

Top production through FCNC

From R.Wallny's Wine and Cheese talk, 03/10/2009

Milestone in the race for Higgs Boson !

Public web sites

More details can be found on the public pages of the experiments:

http://www-cdf.fnal.gov/physics/new/top/public_singletop.html

May 3,.2009

http://www-d0.fnal.gov/Run2Physics/top/singletop_observation

$$\Gamma^{\mu}_{Wtb} = -\frac{g}{\sqrt{2}} \underbrace{V_{tb}}_{tb} \left\{ \gamma^{\mu} \left[f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right] - \frac{i\sigma^{\mu\nu}}{M_{W}} \left(p_{t} - p_{b} \right)_{\nu} \left[f_{2}^{L} P_{L} + f_{2}^{R} P_{R} \right] \right\}$$

Elizaveta Shabalina (Uni Goettingen) – APS April 2009 meeting

May 3,.2009